Basic Definitions

January 28, 2015

Recall that:

- A set is a collection of elements.
- A relation R defined on elements of a set S is a subset of $S \times S$.
- An equivalence relation is symmetric, reflexive, and transitive.
- A function f from A to B is a subset of $A \times B$ such that for each $a \in A$, there is precisely one b such that $(a, b) \in f$. By convention, we denote f(a) = b.
- A partially ordered set, or poset, is a set with a relation ≤ satisfying the properties of reflexivity, anticommutativity, and transitivity.
- A group G is a set with an operation on its elements, *, that satisfies the following properties:
 - * is associative.
 - There is an element e for which e * g = g and g * e = g for any element $g \in G$.
 - For any $g \in G$ there exists a (unique) element g^{-1} for which $g * g^{-1} = e$ and $g^{-1} * g = e$.
 - An **abelian group** is a group where * is commutative.
- A ring is a set R with two operations + and *, so that:
 - R is an abelian group under +.
 - * is associative.
 - The operations satisfy the distributive property a * (b+c) = a * b + a * c.
 - Most rings we encounter will have a multiplicative identity, known as 1. Some authors take this as a requirement for a ring. Note that the set of even integers is a ring without an identity element, sometimes referred to as a "rng". $\ddot{\sim}$
- Some other properties a ring may have are:

- A ring R where a * b = b * a for all $a, b \in R$ is called a **commutative ring**.
- A nonzero ring R where a * b = 0 implies that either a or b is zero is called an **domain**. If it is commutative, it is called an **integral domain**.
- A **unit** is an element of a ring invertible with respect to *. If every element is invertible, R is a **division ring**.
- A commutative division ring is known as a **field**.
- A left **R-module** over a ring R with unit consists of an abelian group M under +, and an operation $R \times M \to M$, known as scalar multiplication, for which:

$$-r(x+y) = rx + ry$$
$$-(r+s)x = rx + sx$$
$$-(rs)x = r(sx)$$
$$-1_R x = x.$$

A right *R*-module is defined similarly.